

34TH AIAA THERMOPHYSICS CONFERENCE TRENDS AND ISSUES IN THERMAL SPACECRAFT MANAGEMENT PANEL DISCUSSION

Use of Passive Versus Active Systems

Glenn T. Tsuyuki

Jet Propulsion Laboratory

California Institute of Technology

June 20, 2000

JPL

<u>Agenda</u>

- A Word About Processes: "It worked on Apollo and I don't see why it shouldn't work now!"
- Thermal Analyst Versus Thermal Engineer
- A Word About Recent Design Challenges: "You're going where and with how much power!!??"
- Mission-Enabling Thermal Designs
 - Passive & Active Approaches
- Overview of Enabling Thermal Control Approaches
- Conclusions

A Word About Processes: "It worked on Apollo and I don't see why it shouldn't work now!"

- All processes have finite life cycles
- Standard passive spacecraft system thermal design approaches have been employed for nearly 40 years
- Take on a competitive mindset to renew the thermal design process

Thermal Analyst Versus Thermal Engineer

- Avoid the "lobbing over the fence" process => thermal design in a reactive mode since it is last in the serial chain
 - Problems uncovered too late in development cycle
 - "Band-aid" resolutions implemented
- Spacecraft thermal design is a systems job => help drive the mechanical configuration

A Word About Recent Design Challenges: "You're going where with how much power!!??"

- Interplanetary Thermal Environment
 - 10 solar constants at Mercury
 - 0.1 solar constant at Pluto
 - Earth environment Is a subset of a larger picture
- Design Space Variance
 - Microspacecraft to large inflatable structures
 - Power-starved (<100 W) to high power dissipation (>10 KW)
 - High power density electronics
 - Ultra-stable optical benches (< 10 mK/hr)

Mission Enabling Designs

PASSIVE

- Phase change thermal energy storage for planetary surface diurnal thermal control Mars surface Missions
- Light weight high performance thermal insulation for Mars missions
- Mechanical thermal switch

ACTIVE

- Loop heat pipe systems (including by-pass valve) for survival heater power reduction for earth orbiting and deep space missions
- Mechanical pumped fluid system: Mars Pathfinder Heat Rejection System
- Variable emissivity surfaces

Miniature Loop Heat Pipe Technology

• Miniature loop heat pipe (Dynatherm Corporation)

Technical Description

- A versatile thermal control device: transfers heat, controls source temperature, and acts as a heat switch (all in one)
- Light weight (less than 150 gms) device compared to other thermal control hardware performing the same function
- Enormous flexibility in locating heat sources and sinks on the spacecraft

Participants & Facilities

- JPL is investigating this technology for space applications (Mars rover/lander, micro S/C)
- Tests to be performed at JPL and Goddard during FY00 for evaluating miniature multiple evaporator loop heat pipe
- Dynatherm Corporation has designed and fabricated a miniature loop heat pipe for Mars Rover battery thermal control concept

Mission Impact & Future Applications

- This technology reduces S/C thermal control mass and provides enormous flexibility
- This is a key technology for enabling Integrated Thermal Energy Management System for DSST 2nd Delivery
- This technology is applicable to small & large S/C and planetary vehicles thermal control

Mars Pathfinder Mechanically Pumped Cooling Loop

 Electronic equipment shelf maintained within +/- 2 C for entire cruise

Variable Emissivity Surfaces (Electrochromic)

Electrochromic device from Ashwin-Ushas

Description

- A change of surface emissivity in the range of
 0.3 to 0.8 by an external electric field of < 5V
- Provides a low mass (0.5 kg/m²) device to vary heat rejection capacity on the spacecraft (order of magnitude lighter than mechanical louvers)
- Conducting polymer material used as electrochromic material
- Devices based on similar materials used for auto and building energy conservation

Status & Future Applications

- Significant work by EIC labs, LBL Berkeley, ASHWIN-USHAS, NASA Lewis
- JPL, GSFC & AFRL investigating for S/C use
- Excellent candidate for JPL's Integrated Thermal Energy Management (ITEM) systems for future spacecraft
- Initial validations tests: 10 Mrad Gamma radiation
- Space qualification of the material is an important next step;
 - Thermal vac and radiation tests at JPL
 - Solar wind tests at GSFC
- Device failure mechanisms in space applications need to be understood

GTT-8

Phase Change Thermal Storage for Battery Applications

Description:

- Phase change material (PCM) utilizes latent heat to protect batteries against low temp.
 extremes by providing thermal storage
- PCM stores excess heat when available and releases the heat when needed
- The technology is simple, reliable, and mass efficient

Current Status:

- Dodecane PCM material (-10 C MP) encapsulated in a carbon fiber matrix
- A battery/PCM capsule was fabricated by ESLI for JPL
- It is integrated with miniature LHP and being tested at JPL in a simulated Martian environment to evaluate rover battery/electronics thermal control

Future Development:

- Investigate PCM materials with lower MP for lower temperature operations (below -20 C)
- Develop and qualify low mass system for thermal energy management on Mars landers, in-situ experiments and Microspacecraft missions

Mars Rover Thermal Control Design

Initial testing at JPL completed in April 2000

Conclusions

- A shift in the thermal design process is essential to keep pace with demanding spacecraft capability
 - Leverage emerging thermal hardware to develop straightforward and robust designs
- Take a proactive role in the conceptual development stage to strengthen use of emerging thermal approaches